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ABSTRACT: A rigid hinge frame combined with pre-stretched dielectric elastomer (DE) films can form an active biological agonist–

antagonist configuration. In this structure, the DE films undergo a constant deformation under a static voltage as well as specific

reciprocating rotation under an alternative voltage. To theoretically investigate the static and dynamic performance, we establish the

kinetic equation of the active hinge configuration. The computational static rotary angle exhibits a good fit with the experimental

data from literature. Based on this model, static performance of this configuration when DE undergoes uniaxial and pure shear defor-

mation is investigated. Subject to a small perturbation, the configuration may oscillate around the equilibrium state and the natural

frequency can be obtained. By varying the pre-stretch ratios, applied voltage, layer number, and the rotational inertia of the hinge, we

can tune the natural frequency at a wide range. When the voltage is sinusoidal and varies continuously, the configuration resonates at

multiple frequencies of excitation, known as harmonic and superharmonic resonance. Our research may serve as a guide to optimal

design and provide insights into the performance of the hinge configuration, which can effectively expand the structure’s application

fields. VC 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41630.
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INTRODUCTION

As a sub-category of electro-active polymers, dielectric elastomers

(DE) are regarded as promising candidates for artificial muscles

with the unique properties of light weight, fast response, large

strain, high-energy density, and high efficiency.1,2 A dielectric elas-

tomer actuator is normally composed of an insulating elastomeric

membrane, sandwiched between compliant electrodes, as a parallel

capacitor.3 Subject to an external voltage, the elastomer is

squeezed by a compressive stress and accordingly reduces its

thickness while expands in area. The compressive stress is defined

as Maxwell stress, generated by the attraction of charges accumu-

lated on the surfaces of the DE.4 The electrical excited deforma-

tion is similar to biological muscles and explored in many

applications, such as soft robots,5 optics lens,6,7 Braille displays,1

electric generators,8 spring-rolled actuators,9–11 and agonist–antag-

onist configurations.12–14

The agonist–antagonist configuration has attracted academic inter-

ests in recent years because it offers a tunable resonator and bio-

inspired applications.15,16 Lochmatter et al. first presented the

basic working principle of the active hinge configuration and con-

ducted mechanical performance test, including rotary angle,

blocking moment, and durability, which proved the feasibility and

potential of this structure.14,17 Jordi et al. studied the mechanical

performance of the configuration integrated with three different

materials, among which VHB shows the best actuation perform-

ance.18 In her further study, she designed and manufactured a pis-

ciform airship based on the active hinge configuration, verifying

the structure’s potential of being used in aerodynamics.19 How-

ever, the previous studies are mainly focused on the configura-

tion’s static mechanical performance by experiment. Theoretical

analysis is lacking which makes the disciplines and factors influ-

encing the configuration’s static performance cannot be mastered

well. Furthermore, both of theoretical and experimental dynamic

studies are vacant, considerably limiting the configuration’s appli-

cation in dynamic field.

In practice, the hinge configuration is mostly subject to

dynamic excitation with a wide range of frequencies when
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mimicking biological movements, making it essential to model

the dynamic performance of the configuration. In theoretical

studies, models characterizing the nonlinear dynamics of DEs

are already established. Zhu et al. studied the nonlinear oscilla-

tions of a DE balloon around an equilibrium state and subse-

quently analyzed the resonance behavior of a DE membrane

pre-stretched and mounted on a rigid circular ring under para-

metric excitation.20,21 Li et al. studied the dynamics of a tunable

DE resonator and identified the safe range for failure prevention

when actuating the resonator.15 Conclusions of these models

coincide well with experimental observations for each specific

actuator. Meanwhile, no study focused on the dynamics of DE

during the actuation of a hinge configuration. To master the

performance and guide the design of the configuration in

dynamic field, establishing a theoretical model is obligatory.

To study the static and dynamic performance of the hinge

configuration actuated by DE actuators, we analyze the defor-

mation and vibration of DE actuation. First, we present the

mechanism of a hinge configuration with integrated DEs and

deduce the kinetic equation using the method of variational

and force analysis. Second, we describe the state of equilib-

rium under static voltage when DE undergoes two modes of

deformation: “uniaxial deformation” and “pure shear.” The

configuration shows a small and unstable rotary angle when

DE undergoes “uniaxial deformation.” In contrast, the struc-

ture of DE undergoing “pure shear” exhibits a good and stable

mechanical behavior and the computational results fit well

with the experimental data from literature. In the following

section, we study the configuration’s small oscillation around

a state of equilibrium and show that the natural frequency

can be tuned by varying parameters. Subject to an alternating

voltage excitation, the configuration shows resonance behavior

at multiple frequencies. Our theoretical studies on static and

dynamic performances of the configuration were concluded in

the last section.

MODEL OF DE INTEGRATED HINGE CONFIGURATION

Mechanism in Hinge Configuration

One of the potential applications of DE integrated hinge config-

uration is working as an air-borne vehicle with flapping wing,

as showed in Figure 1. Each hinge flapping wing consists of two

parallel DE films pre-stretching each other by a hinged rigid

frame. The layer number of DEs on each side is flexible depend-

ing on the required performance of the configuration. Referring

to Figure 1(a), at the unactivated state, the wing is in the neu-

tral position, represented by the solid line. When the driving

voltage is applied to the lower side, the DE on this side expands

while the upper DE shrinks due to elastic stress. Accordingly

the wing rotates to a new position, denoted by the dash line.

Similarly, activating the DE on the upper side will generate a

reverse rotary motion. By activating the DE on either side alter-

natively, the flapping wing configuration performs a reciprocat-

ing swinging which is comparable to the motion of a real bird’s

wing.

Constitutive Equation of DE

Figure 2 illustrates the mechanical model of a dielectric elasto-

mer film. In the undeformed state, the DE membrane has a rec-

tangular shape with a thickness L3 and length L1 in one-

direction and length L2 in two-direction. Subject to forces P1

and P2, the membrane reduces its thickness and expands to a

new dimensions L
p
1 , L

p
2 , and L

p
3 . The pre-stretch extensional

ratios are defined as kp
15L

p
1=L1, kp

25L
p
2=L2, and kp

35L
p
3=L3.

Figure 2(c) shows the actuated state of a DE film with dimen-

sions l1, l2, and l3, when voltage U is applied. Similarly, we

define the overall stretch ratios by k15l1=L1, k25l2=L2, and

k35l3=L3. The DE here is assumed as an ideal dielectric elasto-

mer whose density and dielectric constant are independent of

deformation, therefore, we have k35k21
1 k21

2 . The amount of

accumulated charges is 1Q and 2Q on each electrode in the

actuated state can be formulated as:

Q5U
eL1L2

L3

k2
1k

2
2; (1)

where e is the permittivity.

Based on the nonlinear field theory of dielectric elasto-

mer,22–24 we define the DE film as a thermodynamic system

with three independent variables k1, k2, and U. The thermo-

dynamics of the dielectric elastomer is characterized by the

density of Helmholtz free energy W , which is the function of

the three independent variables W k1; k2;Uð Þ and composed of

an elastic energy density and a static electric energy density

Figure 1. Conceptual design of a flapping bionics aerocraft drived by the

hinge configuration with integrated DE. (a) The solid line represents a

position of the unactivated wing while the dash line represents a new

position of the activated wing. (b) Effect drawing of the bionics aerocraft

with hinge flapping wings.
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W 5
1

2
l k2

11k2
21k22

1 k22
2 23

� �
1

eU2

2L2
3

k2
1k

2
2: (2)

In eq. (2), the first term on the right hand side is the elastic

energy density where m is the shear modulus and the second

term is the static electric energy density. Here, we use a Neo-

Hookean model to calculate the elastic energy density.

Under the constant electromechanical loads P1, P2, and U, the DE

film attains a state of equilibrium. When the dimension varies by

dl1 and dl2, the mechanical loads P1 and P2 do work of P1dl1
and P2dl2. When the charge on the electrodes varies by dQ, the

applied voltage U does work of UdQ. As showed in Figure 2(a),

the inertial force in each material element during actuation along

one-direction is 2qL2L3dxðd2xk1=dt2Þ. The virtual work done by

the material element is 2qL2L3dx d2xk1=dt2ð Þdxk1. The total vir-

tual work done by the inertial force can be obtained by integrat-

ing x along the one-directionÐ L1

0
2qL2L3dx d2xk1=dt2ð Þdxk152 1

3
qL3

1L2L3dk1 d2k1=dt2ð Þ, where

q is the density of DE, which is independent of the

deformation.

For an arbitrary variation of the thermodynamic system, the

variation of the total free energy equals the work done by the

mechanical loads, the voltage, and the inertial force, namely

L1L2L3dW 5P1dL1k11P2dL2k21UdQ2
1

3
qL3

1L2L3

d2k1

dt2
dk1: (3)

Inserting eqs. (1) and (2) into eq. (3), and reviewing that the

DE film is a thermodynamic system with three variables k1,

k2, and U, we obtain the electromechanical coupling constitu-

tive equation as follows,

S15
1

3
qL2

1

d2k1

dt 2
1lk12lk23

1 k22
2 2

eU2

L2
3

k1k
2
2 (4)

S25lk22lk22
1 k23

2 2
eU2

L2
3

k2
1k2; (5)

where S1 and S2 are nominal stresses defined by S15P1= L2L3ð Þ
and S25P2= L1L3ð Þ.

Kinetic Equation of the Hinge Configuration

If the DE films on both sides of the hinge structure have the

same pre-stretch ratios and layer numbers, the configuration will

hold in the neutral position initially, as showed in Figure 3(a).

When DE on one side is subject to a voltage and expands, the DE

on the other side will shrink due to the elastic stress. Subsequently

the hinge rotates to a new position, Figure 3(b). Suppose the

hinge obtains a rotary angle h when activating one side’s DE, we

can deduce the kinetic equation as following by force analysis,

Figure 2. Schematics of a DE film in three states. (a) Undeformed state. A DE film under no electromechanical loads has dimensions L13L23L3. (b)

Pre-stretched state. Subject to only mechanical loads P1 and P2, DE attains dimensions kp
1L13kp

2L23kp
3L3. (c) Actuated state. Subject to both electrome-

chanical loads, P1, P2, and U, DE has dimensions k1L13k2L23k3L3. Because of incompressibility, we obtain k35k21
1 k21

2 . [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Figure 3. Schematics of active hinge configuration in two states. (a) Unactuated state. When DEs are subject to no voltage, the hinge configuration is in

the neutral position. (b) Actuated state. The configuration rotates to a certain position when voltage is applied to DEs on one side.
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Fa cos a
D

2
2Fb cos b

D

2
1J

d2h
dt 2

50; (6)

where J and h refer to the rotational inertia and the rotary angle

of the hinge, respectively. a and b are functions of h obtained by

geometrical accommodation, see Appendix A. Fa and Fb are act-

ing forces on the hinge caused by the DE films on both sides. D

and L are structural parameters marked in Figure 3.

Based on eq. (4), we get the formulations of Fa and Fb,

Fa;15nL2L3

1

3
qL1

d2la;1

dt 2
1lka;12lk23

a;1k
22
a;22

eU2

L2
3

ka;1k
2
a;2

� �
(7)

Fb;15nL2L3
1

3
qL1

d2lb;1

dt2
1lkb;12lk23

b;1k
22
b;2

� �
; (8)

where n represents the number of layers of pre-stretched DE

films.

Recalling that the final mechanical output is the hinge’s rotary

angle h, we regard la;1, lb;1, ka;1, ka;2, kb;1, and kb;2 as interme-

diate variables. la;1, lb;1, ka;1, and kb;1 can be written as func-

tions of h. The detailed derivation is available in Appendix A.

Expressions of ka;2 and kb;2 depend on the DE’s deformation

mode. By inserting eqs. (7) and (8) into eq. (6) and reducing,

the kinetic equation takes the form as following,

d2h
dt2

1D
dh
dt

� �2

1u h; ka;1; ka;2; kb;1; kb;2;U
� �

50; (9)

where D5 C1cos a2C3cos b
C2cos a2C4cos b1 6J

nqDL1L2L3

and

u h; ka;1; ka;2; kb;1; kb;2;U
� �

5

lka;12lk23
a;1k

22
a;22

eU2

L2
3

ka;1k
2
a;2

� �
cos a2 lkb;12lk23

b;1k
22
b;2

� �
cos b

1

3
qL1 C2cos a2C4cos bð Þ1 2J

nDL2L3

:

In order to get the differential equation about h, the second

derivative of la;1 and lb;1 in eqs. (7) and (8) must be written as

formulas composed of the first and the second derivative of h,

where Ci i51; . . . ; 4ð Þ represents the related coefficient of the

derivative of h. The detailed signification and derivation of sym-

bols C1, C2, C3, and C4 are shown in Appendix B. The hinge’s

kinetic equation is a nonlinear second order ordinary differen-

tial equation involving a quadratic dependence on the first

derivative of the rotary angle. All the following analyses are

based on solving eq. (9) with software MATLAB.

ANALYSIS OF STATIC PERFORMANCE

When the DE on one side is subject to a constant voltage U,

the configuration will rotate to a new state of equilibrium. This

state of equilibrium is described by the hinge’s rotary angle heq

independent of time. With respect to eq. (9), the first and sec-

ond derivative of h vanish when the configuration is at a static

state. Thus, we obtain the governing equation at the state of

equilibrium as follows,

u h; ka;1; ka;2; kb;1; kb;2;U
� �

50: (10)

Note that the static rotary angle heq is independent of the DE’s

dimension in the two-direction and the number of layers of the

pre-stretched DE films.

In the following computational simulation, we use a hinge con-

figuration with L50:05 m and D5W 50:03 m. VHB4910 is

selected as the dielectric elastomer for its excellent actuating

performance. The parameters of the DE used are L351 mm,

q51:2 kg3m23, e53:9310211 F=m, and l560 kPa.18,25 Though

the permittivity e is dependent on temperature, pre-stretch, fre-

quency and electrode materials, the change is small in the case

of small deformation and low frequency.26–28 In this article, we

regard the permittivity as constant considering the largest aspect

pre-stretch ratio is 9 and the frequency is less than 600 Hz, at

ambient temperature.

Figure 4. Schematics of DE with uniaxial force in three states. (a) Undeformed state. Two edges of a DE film without electromechanical loads are fixed

by clamps. (b) Pre-stretched state. The film is pre-stretched along one-direction, consequently causing a shrinkage in two-direction. (c) Actuated state.

The activated side DE elongates in one-direction while the unactivated side DE shrinks in one-direction. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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The dielectric elastomer shows different electromechanical

deformations depending on the loading and constraint condi-

tions. This has been proven theoretically and experimentally by

Lu et al. and Huang et al.29,30 In the current hinge configura-

tion, the DE is activated in two deformation modes: uniaxial

and pure shear deformation. Either mode shows a special prop-

erty in electromechanical coupling and will be studied and com-

pared in the following sections.

DE with Uniaxial Force

Figure 4 shows the uniaxial deformation of the DE. In this case,

the force in one-direction gives rise to a shrinkage of the DE in

two-direction, consequently the nominal stress S2 keeps zero basi-

cally. For the actuated DE(a-side), eq. (5) reduces to

k
a;2

5 k2
a;12

eUa
2

lL2
3

k4
a;1

� �21
4

: (11)

Similarly, for the unactuated DE (b-side), eq. (5) reduces to

kb;25
1ffiffiffiffiffiffiffi
kb;1

p : (12)

These two equations describe the relation between k1 and k2

when the DE is subject to a uniaxial force.

Inserting eqs. (11) and (12) combined with eqs. (A6) and (A7)

into eq. (10), we obtain u heq; k
p
1;U

� �
50.

Curves in Figure 5 describe the relation between the rotary

angle and the applied voltage at several levels of pre-stretch

ratios in one-direction. With the increase of voltage, the

rotary angle increases slowly until the voltage reaches its max-

imum value. The maximum voltage value represents a critical

state. Below the critical voltage, each voltage corresponds to

two values of rotary angle. The lower value of rotary angle on

the rising part of the curve corresponds to the stable state

while the one on the decreasing part refers to the unstable

state. At the maximum value of voltage, the rotary angle may

increase quickly due to the rapid thinning of the DE under a

small perturbation, so that the voltage induces a high electric

field. The positive feedback may cause a drastic thinning of

DE until electric breakdown. This phenomenon is well known

as the electromechanical instability (EMI) as explained by

Zhao and Suo.22,23

Another interesting phenomenon is that enlarging the pre-

stretch ratio along one-direction lowers the critical voltage

and decreases the accessible rotary angle correspondingly.

Upon pre-stretch the membrane stiffens in one-direction but

remains soft in two-direction. This anisotropy in elasticity

causes the DE to deform mainly in two-direction and thin

drastically.29 This explains the small rotary angle when the

DE is subject to uniaxial force.

Figure 5. Rotary angle of the configuration is plotted when DE undergoes

uniaxial deformation at several levels of kp
1. All the curves show non-

monotonic changes with one voltage peak value. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 6. Schematics of DE undergoing pure-shear deformation in three states. (a) Undeformed state. The film is not stretched with dimensions L13L2.

(b) Pre-stretched state. The film is pre-stretched to dimensions L3W and stiff fibers are added to constrain the shrinkage in two-direction. (c) Actuated

state. For DEs on both two sides, dimensions in one-direction change while dimensions in two-direction keep as W during the actuation. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Pure Shear Deformation

As DE undergoes uniaxial deformation suffering from EMI, var-

ious methods are adopted to realize the pure shear deformation

of DE.13,29,30 In Figure 6, both DEs are constrained by the stiff

fiber effectively and they undergo pure shear deformation. The

stretch ratios in two-direction follows,

ka;25kb;25kp
2: (13)

Inserting eqs. (13), (A6), (A7), and (A8) into eq. (10), we for-

mulate the governing equation at a state of equilibrium

u heq; k
p
1; k

p
2;U

� �
50. This equation indicates the final rotary

angle, which is determined by the pre-stretch ratios kp
1 and kp

2

under a given voltage.

Figure 7(a) plots the rotary angle–voltage curves of equilibrium

state of DE in pure shear deformation compared with the DE

in uniaxial deformation, at the same pre-stretch ratio kp
153.

The pure-shear deformation denoted by the blue line shows a

monotonic change while the uniaxial deformation denoted by

the red line has a peak value. As is shown by the blue line, with

the voltage increasing, the rotary angle increases monotonically,

which means the electromechanical instability is avoided. At the

same voltage, the configuration of the DE in pure shear shows a

larger rotary angle than that in uniaxial elongation.

Figure 7(b,c) plots the curves of rotary angle versus voltage in

pure shear deformation. When the DE is equally biaxial pre-

stretched, the rotary angle increases with the pre-stretch ratio

enlarging. This can be easily understood as larger area pre-stretch

ratio makes the DE thinner, accordingly inducing a higher electric

field and Maxwell stress,4 considering a condition that DEs have

the same area pre-stretch ratio as kp
13kp

259. As is shown in Figure

7(c), a DE with a lower level of kp
1 shows better actuating perform-

ance. The unequal biaxial pre-stretch induces anisotropy, so that

DE deforms mainly in the less pre-stretch direction, which has a

lower stiffness. However, Li et al. has verified that the DE may fail

in the less pre-stretch direction due to the compliance of the

materials.31 Therefore, the unequal biaxial pre-stretch enhances

the actuating performance but lowers the stability of the DE com-

pared to equal biaxial pre-stretch.

We compare the computational results with the experimental

data extracted from Ref [18] Jordi et al. manufactured the

active hinge configuration with L50:05 m and W 50:03 m.

VHB4910 is selected with a pre-stretch ratio k13k25335.

The parameters used in the calculation are the same as those

in the experiment. As depicted in Figure 8, the computational

results denoted by the blue line fit well with the experimental

results denoted by the red dots. A small difference is

observed. The theoretical calculation overestimates the exper-

imental results. With the voltage increasing, the discrepancy

becomes smaller. This is understood as we adopt an ideal

model which does not take into account the friction at the

revolute and the efficiency of the fiber constraint.

Comparing the above two modes of DE’s deformation, pure

shear deformation is identified to be both stable and efficient,

thus the dynamic analyses of the configuration are based on

this mode of deformation.

Figure 7. Rotary angle of the configuration is plotted when DE undergoes

different modes of deformation. (a) Curves of actuation when DE under-

goes uniaxial and pure shear deformation with the same kp
153. (b)

Curves of actuation when DE undergoes pure shear deformation with dif-

ferent equal-biaxial pre-stretch ratios. (c) Curves of actuation when DE

undergoes pure-shear deformation with the same area pre-stretch ratio.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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ANALYSIS OF DYNAMIC PERFORMANCE

We use the nonlinear vibration modeling to analyze the oscilla-

tion of the hinge configuration.15,20,21 Subject to a static voltage,

the hinge configuration deforms to a state of equilibrium with a

rotary angle heq. This structure can oscillate around the equilib-

rium state under a small perturbation. Subsequently, the rotary

angle turns to be h tð Þ5heq1d tð Þ. Here, d tð Þ is the amplitude of

the perturbation and thought to be very small. We expand h as

a power series in dðtÞ around the equilibrium state rotary angle

heq. To the first order in dðtÞ, the motion eq. (9) becomes

d2d
dt2

1D
dd
dt

� �2

1d
duðheq; k

p
1; k

p
2;U; n; JÞ

dh
50: (14)

The natural frequency takes form as,

x2
05

duðheq; k
P
1 ; k

P
2 ;U; n; JÞ

dh
: (15)

The natural frequency of the hinge configuration x0 is deter-

mined by the following parameters: static voltage U, pre-stretch

ratios in two directions kp
1 and kp

2, the layer number of DE films

n, and the rotational inertia of the hinge J . x0 can be calculated

by adopting the following method: first we obtain the rotary

angle heq by solving eq. (10) under a given set of parameters;

inserting heq and the corresponding parameters into eq. (15),

the natural frequency x0 is then obtained. Because of the nonli-

nearity in material and coupling, the natural frequency of the

structure is highly tunable.

To investigate the effects of given parameters on the natural fre-

quency, we first present a set of initial values as

U52000V; kp
153; kp

253; n51; J5231027 kg3m2
	 


. We separate

one parameter from others for an individual study while the

others keep constant as the presented values. Figure 9(a–e)

describes the relations between the natural frequency and the

parameters affecting it. As shown in Figure 9(a), with J increas-

ing, x0 decreases from about 350 to 220 Hz. In contrast, adding

the number of DE films induces a big increment of x0. This

can be easily understood as enlarging J means the increment of

passive mass, accordingly reducing x0 drastically. Suppose a

limiting case where J is big enough that the DE’s actuating

capability almost has no effect, thus x0 reduces to almost zero.

However, adding more layers of DE films weakens the effect of

hinge’s rotational inertia. When the number of DE films is large

enough, the hinge’s rotational inertia can be neglected and x0 is

almost equal to DE’s natural frequency of this structure.

Natural frequency versus voltage curve plotted in Figure 9(c)

shows a non-monotonic variation trend. With the increasing of

voltage, the natural frequency first falls slightly and then

increases rapidly. At a lower level of voltage, the compressive

Maxwell stress softens the membrane and reducing its x0. The

rising part of the curve reflects the stiffening of the configura-

tion at a higher voltage.15,32 Figure 9(d,e) plots the pre-stretch

versus natural frequency. When kp
2 and U are set as the pre-

sented values, x0 enhances with the enlarging of kp
1. Owing to

the lower level of voltage U52000 V, the pre-stress due to kp
1

dominates over the Maxwell stress, which strengthens the DE

and subsequently enhances x0. In Figure 9(e), x0 shows a

decreasing trend with the enlargement of kp
2. In pure shear

deformation mode, unequal biaxial pre-stretch induces anisot-

ropy on the DE. The less pre-stretched direction is compara-

tively compliant, accordingly suppressing the x0.

The dynamics of the hinge configuration can be very compli-

cated when the voltage varies with time. Based on the previous

work done by Li et al. and Zhu et al.,15,20,21 we investigate the

intricate dynamic behavior of the configuration. We prescribe

the applied voltage on the a-side as:

U tð Þ5Udc1Uacsin ðXtÞ; (16)

where Udc, Uac, and X indicate the DC voltage, the amplitude

of the AC voltage, and the excitation frequency, respectively.

Inserting eq. (13) into eq. (7) and reducing,

d2h
dt2

1D
dh
dt

� �2

1

lka;12lk23
a;1k

22
a;22 eUdc

2

L2
3

11 Uac

Udc
sin ðXtÞ

� �2

ka;1k
2
a;2

� �
cos a2 lkb;12lk23

b;1k
22
b;2

� �
cos b

1
3
qL1 C2 cos a2C4 cos bð Þ1 2J

nDL2L3

50: (17)

Subject to an oscillatory voltage, the active hinge configuration

will vibrate, which is described by the time-dependent rotary

angle h obtained for given initial condition. Note that in this

numerical simulation, except for the voltage, the other parame-

ters are prescribed as initial values presented above. First, we

apply a constant voltage as 2000 V, the configuration rotates to

a new position with heq50:0392. Then we apply the oscillatory

voltage with Udc52000 V, Uac5200 V, and a specific value of X.

Figure 8. Comparison between experimental data represented by red dots

and computational results represented by the blue solid line. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.

com.]
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When h tð Þ attains a steady oscillation, we define the amplitude

of oscillation as half of the difference between the maximal and

minimal values.

Figure 10 plots the amplitude of oscillation in the frequency

domain. At the frequency of 278 Hz, the amplitude of oscilla-

tion reaches its maximum value. This phenomenon is well

known as harmonic resonance. The superharmonic resonance

is also predicted: the configuration also resonates when the

excitation frequency approaches half of the natural frequency.

By varying the DC voltage Udc, the natural frequency can be

tuned which has been discussed above.

CONCLUSION

In this article, we established the kinetic equation of an active

hinge configuration actuated by DE. Subject to a constant volt-

age, the hinge can rotate to an equilibrium state and the state is

Figure 9. The natural frequency of the configuration is plotted as a function of the corresponding parameters. The natural frequencies show monotonic

changes with the varying of rotational inertia (a), number of layer (b), pre-stretch ratio kp
1 (d), and kp

2 (e). As is shown in (c), with the increase of volt-

age, the natural frequency increases quickly after a slight decreasing. [Color figure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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affected by the modes of deformation and pre-stretch ratios of

the DE. We theoretically study the effects of above parameters on

the configuration, which shows that DE undergoing pure shear

deformation has a larger actuating capacity without an electro-

mechanical instability compared to uniaxial deformation. Our

theoretical predictions are verified by the static experiments con-

ducted by Jordi. Under a small perturbation, the configuration

may oscillate around the equilibrium state. The natural frequency

of the configuration can be tuned by changing the pre-stretch

ratios, number of layer, applied voltage, and the rotational inertia

of the hinge. When the applied sinusoidal voltage varies continu-

ously, the configuration resonates at two frequencies during exci-

tation, known as harmonic and superharmonic resonance.

However, dynamic experiments of the configuration are expected

for further investigation. In addition, effects of viscoelasticity on

the static and dynamic characteristics should also be considered,

because they affect the electromechanical coupling efficiency.33,34

Our following work will involve the above two aspects.

APPENDIX A: DERIVATION OF CORRESPONDING
INTERMEDIATE VARIABLES

Referring to Figure 3(b), adopting cosine theorem, we can

obtain functions la;1 hð Þ and lb;1 hð Þ as below,

la;15 L21
D2

2
2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L21

D2

4

r
cos h1arctan

2L

D

� � !0:5

(A1)

lb;15 L21
D2

2
2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L21

D2

4

r
cos arctan

2L

D
2h

� � !0:5

: (A2)

In the upper equations, L and D are dimensions of the rigid struc-

ture labeled in Figure 3(a). Note that L is equal to the length of

pre-stretched DE in one-direction, L
p
a;1 and L

p
b;1.

Similarly using sine theorem, we obtain the relation between a,

b, and h.

cos a5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L21 D2

4

q
sin ðh1arctan 2L

D
Þ

la;1
(A3)

cos b5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L21 D2

4

q
sin ðarctan 2L

D
2hÞ

lb;1
: (A4)

The final stretch ratio of DE along the two directions can be

formulated as a function of the pre-stretch ratio in the two

directions kp
1, kp

2, and the rotary angle h.

kp
15

L
p
1

L1

5
L

L1

(A5)

ka;15
la;1

L1

5
L

p
1

L1

la;1

L
p
1

5kp
1

la;1

L
(A6)

kb;15
lb;1

L1

5
L

p
1

L1

lb;1

L
p
1

5kp
1

lb;1

L
: (A7)

Especially in the condition of DE’s pure shear deformation,

we can deduce

kp
25

L
p
2

L2

5
W

L2

; (A8)

where W refers to the width of the configuration.

APPENDIX B: DEFINITION AND DERIVATION OF SYMBOLS

Note that the final mechanical output is the hinge’s rotary angle

h. Based on the previous work in APPENDIX A, combined with

derivation rules for compound function, we can translate the sec-

ond derivative of la;1 and lb;1 into a formula composed of the

first and the second derivative of h.

dl

dt
5

dl

dh
dh
dt

d2l

dt2
5

d

dt

dl

dh
dh
dt

� �
5

d2l

dh2

dh
dt

� �2

1
dl

dh
d2h
dt2

:

(B1)

Inserting eqs. (A1) and (A2) into eq. (B1),

d2la;1

dt2
5C1

dh
dt

� �2

1C2
d2h
dt2 (B2)

d2lb;1

dt 2
5C3

dh
dt

� �2

1C4
d2h
dt2

; (B3)

where Ci i51; � � � ; 4ð Þ represents d2la;1=dh2, dla;1=dh, d2lb;1=dh2,

and dlb;1=dh, respectively.
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